Assignment 1 and the R +ggplot2 example...

Make something beside a scatterplot

GRADE EMAIL TEST

Visual Channels and Data Mapping

Perception and Cognition

Magnitude Channels: Ordered Attributes

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Position (Common Scale)

-scatterplots -bar charts -ine charts _222

Position (Un-aligned Scale)

-stacked bars -stacked area -???

Identity Channels: Categorical Attributes

▲

Most

Spatial Region

Hue sucks for magnitude:

Hue sucks for magnitude:

Hue doesn't suck for identity:

Discrimination

Main is

brighter?

(220,220,220)

(230,230,230)

Same distance, but easier. Why?

(80,80,80)

(90,90,90)

(80,80,80)

Which is longer?

Same distance, but same. Why!?

Which is

correlated?

r = 0.95

r = 0.3

just-noticeable differences (jnd)

The smallest difference necessary to perceive two stimuli as being different.

Why were some distances different?

E. H. Weber

Weber's Law

Perceived diff

Perceived diff

Actual intensity of Stimulus

Perceived diff

Actual intensity of Stimulus

Change in Intensity

imagine yourself in a clark room...

bright room, high intensity

$AP = \star A$

super bright light needed

$\Delta P = k * _$

Estimation

Steven's Psychophysical Power Law: S= I^N

Physic

-	3	4	5
cal Intensity			

Steven's Psychophysical Power Law: S= I^N

we under-estimate brightness

Steven's Psychophysical Power Law: S= I^N

we are great at length

Detection field for this size of target

Search Target \

Fixation sequence

Visual-Search

"Find the Tomato"

"Find the Tomato"

"Find the Tomato"

one O(1)eye-move!

recap

Discrimination Weber's Law (ind) **Estimation** Stephen's Power Law Targeting Eye-Movement

Find the Tomato, part 2

Let's add more distractors...

HOW WOUD a

computer

search?

Pre-attentive processing

hard-wired many-channels

Pre-attentive processing

hard-wired many-channels easy to mess up

Feature Integration Theory

Treisman's feature integration model [Healey 04]

master map of locations

Feature maps for orientation & color [Green]

Position + Hue (Color)

Fully separable

Size + Hue (Color)

Some interference

Separable vs. Integral

Width + Height

Red + Green

Some/significant interference

Major interference

Attention

Working

Nemory

Latency

Time Constant

perceptual processing immediate response brief tasks

Table 6.1. Human response to interaction latency changes dramatically at these time thresholds. After [Card et al. 91, Table 3].

How do we get this?

How do we get this?

a. Which of the two is larger?

Position

(Cleveland & McGill, 1984)

b. What percentage is the smaller of the larger?

Angle

Figure 16. Log absolute error means and 95% contidence intervals for judgment types in position—length experiment (top) and position angle experiment (bottom).

What changes can help perception?

VS

What changes can help perception?

VS

What changes can help perception?

VS

evaluation

know which vis

oata/task

omain

Domain situation
Observe target users using existing tools

Wisual encoding/interaction idiom
Justify design with respect to alternatives

Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively Measure human time with lab experiment (*lab study*)

Observe target users after deployment (field study)

Measure adoption