Tableau License for Students

GitHub Student Pack

Block Builder

Administrative

What do you like to do outside of school?

-computer science (????) league -cat videos -travel, hiking, exercise

-gaming: twitch, dota2, witcher,

What are your goals for this course? - "Making graphs that can sing to human's heart"

data analysis effectively

- Technical aspects: js, exploratory

- Practical aspects: presenting data

User interaction/collaboration actions

10.0 8.0 13.(9.(11.(14.0 6.(4.(12.(7.(5.0

0	8.04
0	6.95
0	7.58
0	8.81
0	8.33
0	9.96
0	7.24
0	4.26
0	10.84
0	4.82
0	5.68

Mean Variance

10.0	8.04
8.0	6.95
13.0	7.58
9.0	8.81
11.0	8.33
14.0	9.96
6.0	7.24
4.0	4.26
12.0	10.84
7.0	4.82
5.0	5.68
9.0	7.5
10.0	3.75

	1		2		3		4	
	Х	Y	Х	Y	Х	Y	Х	Y
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75

	1		2		3		4	
	Х	Y	Х	Y	Х	Y	Х	Y
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
Mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
Variance	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
Correlation	0.816		0.816		0.816		0.816	

X3

X4

Tableau

Key question: how to map data to visuals?

Bijection (one visual attribute, one data attribute)

Surjection (multiple visual attribute to one data attribute)

Set Theory

Injection (One to one mapping, but not all data elements are mapped)

What happens when

Data Vars > Visual Vars?

What happens when

Visual Vars > Data Vars?

Data Attributes

Level of Information

Non-ordered and non-numeric

AKA categorical data

['apple', 'pear', 'banana']

nomal

Ordered, not necessarily numeric

[1st, 3rd, 5th, 7th]

['G', 'PG', 'PG-13', 'R']

order for the second second

1st -> 3rd $PG \rightarrow R$

Ordered, not necessarily numeric

[1st, 3rd, 5th, 7th]

['G', 'PG', 'PG-13', 'R']

length is not meaningful

ordinal

1*st* -> 3*rd PG* -> *R*

Ordered, numeric, not ratio-able

['Jan 12', 'Jan 20']

['17', '44', '23', '30']

interval

Jan 12/Jan 20 = ???

23°/30° = ???

Ordered, numeric, ratio-able (has a "true" 0)

[1, 3, 5, 7]

[5'8", 6'1", 5'4"]

$Q \rightarrow O$ [0-100] -> [A, B, C, D, F]

Ratio / Interval (Q)

Ordinal

Nominal

$Q \rightarrow O$ $[0-100] \rightarrow [A, B, C, D, F]$ $O \rightarrow N$ $[A, B, C, D, F] \rightarrow [B, C, F, D, A]$

Ratio / Interval (Q)

Ordina

Nominal

 $Q \rightarrow O$ [0-100] -> [A, B, C, D, F] $O \rightarrow N$ $[A, B, C, D, F] \rightarrow [B, C, F, D, A]$ $N \rightarrow O$ ["Jack", "Alex"] -> ["Alex", "Jack"]

Ratio / Interval (Q)

Ordinal

Nominal

 $Q \rightarrow O$ [0-100] -> [A, B, C, D, F] $O \rightarrow N$ $[A, B, C, D, F] \rightarrow [B, C, F, D, A]$ $N \rightarrow O$ ["Jack", "Alex"] -> ["Alex", "Jack"] $O \rightarrow O$ "Alex"+"Jack" -> 7 ???

Ratio / Interval (Q)

Ordinal

Nominal

Nominal Ordinal ==!= > < <=>=

Interval + -

operations

Nominal Ordinal ==!= > < <=>=

Interval + -

consider a distance function...

operations

→ Ordered

→ Ordinal

→ Quantitative

structure

→ Tables

→ Multidimensional Table

Key 2

Multidimensional Table

Aultidimensional Table

Data Types (\rightarrow) → Items → Attributes Data and Dataset Types Networks & Tables Trees Items (nodes) Items Attributes Links Attributes

Datasets

→ Links → Grids → Positions

Fields	Geometry	Clusters, Sets, Lists
Grids	ltems	Items
Positions	Positions	
Attributes		

→ Tables

→ Networks

 \rightarrow Multidimensional Table

→ Trees

→ Geometry (Spatial)

Position

data shapes the algorithm space

data shapes the visual space

Further Reading

<u>Stevens, Stanley Smith. "On the theory of scales of</u> <u>measurement." (1946).</u>

Visual Attributes

Bertin, Semiologie Graphique, '67

Magnitude Channels: Ordered Attributes

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

(pay attention to your how you judge these differences)

Position (Common Scale)

-scatterplots -bar charts -ine charts _222

Position (Un-aligned Scale)

-stacked bars -stacked area -???

A

Unframed Unaligned

Use design elements to compensate!

В

A В

Framed Unaligned Unframed Aligned

3:00

Angle

Accurate encoding does not ensure accurate perception!

÷

Volume (3D size)

Effectiveness -

Least

Most 🕨

Most 🕨

Effectiveness

Least

Volume (3D size)

Luminance and Saturation– really the same?

Identity Channels: Categorical Attributes

▲

Most

Spatial Region

Hue bad for magnitude:

Hue bad for magnitude:

Hue is great for identity:

Fig. 2: Palettes of visual stimuli used in our experiments: shape, color, size, shape-color, shape-size, size-color.

$O \Box + \times * O \Delta \nabla < \Box >$ $\Box + \times \Diamond \Box + \times \Diamond \Box + \times \Diamond$ \bullet + × \diamond \bullet + × \diamond \bullet + × \diamond \bullet + × \diamond

Demiralp et al., 2014

Fig. 1: (Left) A crowd-estimated perceptual kernel for a shape palette. The kernel was obtained using ordinal triplet matching. (Right) A two-dimensional projection of the palette shapes obtained via multidimensional scaling of the perceptual kernel.

Demiralp et al., 2014

(huge attention grabber, use with caution)

Identity Channels: Categorical Attributes

▲

Most

What happens when

Data Vars > Visual Vars?

What happens when

Visual Vars > Data Vars?

Data Deconstruction

Visualization,

10 ways

